Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2

نویسندگان

  • Simona M. Wagner
  • ShuJun Zhu
  • Adrian C. Nicolescu
  • Lois M Mulligan
چکیده

Multiple endocrine neoplasia 2B (MEN 2B) is an inherited syndrome of early onset endocrine tumors and developmental anomalies. The disease is caused primarily by a methionine to threonine substitution of residue 918 in the kinase domain of the RET receptor (2B-RET); however, the molecular mechanisms that lead to the disease phenotype are unclear. In this study, we show that the M918T mutation causes a 10-fold increase in ATP binding affinity and leads to a more stable receptor-ATP complex, relative to the wild-type receptor. Further, the M918T mutation alters local protein conformation, correlating with a partial loss of RET kinase autoinhibition. Finally, we show that 2B-RET can dimerize and become autophosphorylated in the absence of ligand stimulation. Our data suggest that multiple distinct but complementary molecular mechanisms underlie the MEN 2B phenotype and provide potential targets for effective therapeutics for this disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Drosophila model of multiple endocrine neoplasia type 2.

Dominant mutations in the Ret receptor tyrosine kinase lead to the familial cancer syndrome multiple endocrine neoplasia type 2 (MEN2). Mammalian tissue culture studies suggest that RetMEN2 mutations significantly alter Ret-signaling properties, but the precise mechanisms by which RetMEN2 promotes tumorigenesis remain poorly understood. To determine the signal transduction pathways required for...

متن کامل

Ret-mediated mitogenesis requires Src kinase activity.

The proto-oncogene RET encodes a transmembrane growth neurotrophic receptor with tyrosine kinase (TK) activity. RET mutations are associated with several human neoplastic and nonneoplastic diseases, including thyroid papillary carcinoma, multiple endocrine neoplasia type 2 syndromes, and Hirschsprung's disease. Activation of receptor TKs results in the binding and activation of downstream signa...

متن کامل

Genetic and epigenetic factors affect RET gene expression in breast cancer cell lines and influence survival in patients

Germline and somatic mutations play a crucial role in breast cancer (BC), driving the initiation, progression, response to therapy and outcome of the disease. Hormonal therapy is limited to patients with tumors expressing steroid hormone receptors, such as estrogen receptor (ER), nevertheless resistance often limits its success.The RET gene is known to be involved in neurocristopathies such as ...

متن کامل

Mutations of the RET proto-oncogene in the multiple endocrine neoplasia type 2 syndromes and Hirschsprung disease.

Distinct point mutations in the RET proto-oncogene are the cause of the inherited multiple endocrine neoplasia type 2 syndromes (MEN 2), and the congenital gut disorder Hirschsprung disease. The site and type of these mutations suggests that they have differing effects on the activity of the receptor tyrosine kinase encoded by RET. The normal function of the RET receptor tyrosine kinase has yet...

متن کامل

Ultraviolet light induces redox reaction-mediated dimerization and superactivation of oncogenic Ret tyrosine kinases.

The c-RET proto-oncogene encodes a receptor-type tyrosine kinase, and its mutations in the germ line are responsible for the inheritance of multiple endocrine neoplasia type 2A (MEN2A) and 2B (MEN2B). Ret kinases are constitutively activated as a result of MEN2A mutations (Ret-MEN2A) or MEN2B mutations (Ret-MEN2B). Here we demonstrate that UV light (UV) irradiation induces superactivation of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2006